About us媒体公告

运动控制与自动化过程控制的区别

来源自:媒体公告    点击数:1   发布时间:2024-01-22 17:49:59

  运动控制(MC)是自动化的一个分支,也可叫做电力拖动控制,其动力源大部分都基于电动机。

  也就是说,运动控制其实是基于电动机,实现物体对于角位移、速度、转矩等物理量改变的控制。

  运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。运动控制被大范围的应用在包装、印刷、纺织和装配工业中。

  运动控制其实是基于电动机的,这里的电动机指的是伺服电机;如果一套单机设备上只用了一台伺服电机,这样的一种情况下是更注重于对电机的一个控制,如位置、速度、转矩的控制;这个例子,是想单台电机控制只是运动控制的一个环节。

  而运动控制主要是针对产品,能够说是一个运动控制管理系统,系统整体包含机械(电动机只是机械中的零配件)、电气、软件等,是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预定的控制方案转变为期望的机械运动的控制。

  运动控制管理系统多种多样,但从基本结构上看,一个典型的现代运动控制系统的硬件主要由:上位机、运动控制器、功率驱动装置、电动机、执行机构和传感器反馈检测装置等部分组成。

  自动化过程控制其原理是利用plc控制器收集传感器反馈的数据,并分析处理这一些数据后,调节优化及控制各种设备,以提高生产的效率。

  其控制的对象一般是各类水泵、风机、电动阀门等。总系统一般由plc控制柜、配电柜和控制程序,各传类感器,组态软件,监控系统等组成。

  过程自动化通常用于环保行业如污水、废弃净化处理,节能行业,对工业生产中的各类负载设备做智能调节以保证其运行于最佳状态,以达到节能的目的。大多数都用在传统工业自动化领域中,是一种大系统控制,控制对象比较多,如一条生产线。

  从关注点来说,自动化过程控制(这儿指伺服电机)首要关注的是控制单个电机的转距、速度、方位中的一个或多个参数到达给定值。而运动控制首要关注点在于和谐多个电机,完结指定的运动(组成轨道、组成速度),比较着重轨道规划、速度规划、运动学转化;比方数字控制机床里面要和谐XYZ轴电机,完结插补动作。

  自动化过程控制常常作为运动控制管理系统的一个环节(一般是电流环,作业在力矩方式下),更着重于对电机的控制,一般来说包括方位控制、速度控制、转矩控制三个控制环,一般没有规划的才能(有部分驱动器有简单的方位和速度规划才能)。

  运动控制系统其本质是控制电机,实现其对角位移,转矩,转速等物理量。一般针对某个产品,由机械、软件、电气等模块组成,如精密数控机械、机床、机器人、无人机、运动平台等等。运动控制主要是针对某个产品的个体控制,它可以是某个系统内的某个设备。

  简单来说,就是由运动控制器发出命令,给驱动机构进行功率放大,将放大后的信号传给执行机构(伺服电机),伺服电机自带编码器,可以在一定程度上完成半闭环控制;伺服电机用传动机构控制机械,在机械装置上安装了光栅尺(也是编码器),实现全闭环控制。操作人员在现场可通过人机界面去进行整个环节的调试操作。

  运动控制起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。

  早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。早期的运动控制器其实就是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术方面的要求的其他功能和人机交互功能。

  这类控制器能成为独立运行的运动控制器。这类控制器主要是针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺技术要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC方式传输到控制器,控制器就可以完成相关的动作。这类控制器往往不能离开其特定的工艺技术要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。

  运动控制器:用以生成轨道点(希望输出)和闭合方位反应环。许多控制器也能够在内部闭合一个速度环。

  运动控制器首要分为三类,分别是PC-Based、专用控制器、PLC。其中PC-Based运动控制器在电子、设备机床等行业被普遍的使用;专用控制器的代表是风电、光伏、机器人、成型机械等等;PLC则在橡胶、汽车、冶金等行业备受喜爱。

  驱动或放大器:用以将来自运动控制器的控制信号(一般是速度或扭矩信号)转化为更高功率的电流或电压信号。更为先进的智能化驱动能够自身闭合方位环和速度环,以获得更准确的控制。

  反应传感器:如光电编码器、旋转变压器或霍尔效应设备等,用以反应执行器的方位到方位控制器,以完成和方位控制环的闭合。

  很多机械部件用以将执行器的运动方式转化为希望的运动方式,它包括齿轮箱、轴、滚珠丝杠、齿形带、联轴器以及线性和旋转轴承。

  1、根据要开发设备的工作特点,确定伺服电机的类型; 2、确定要控制的电机轴数和电机工作模式; 3、确定位置检测、反馈模式,选择是否采用光电编码器或光栅尺或磁栅尺; 4、确定输入输出开关量的数量; 5、根据以上内容,选择正真适合的运动控制器。

  一、引言 当前,各种运动控制卡的二次开发的比较复杂。目前国内比较多的工程师都熟悉数控系统的G代码,在ARM 32位单片机和国产运动控制芯片AFD-X05的基础上,研制成的可执行G代码的五轴联动运动控制器,使得二次开发变简单了。应用这种支持五轴直线插补的高速高精度的运动控制器,再开发各种专用的数控系统, 工程师们只需将精力放在大型的复杂的软件开发上面,完全不需要去了解硬件。 二、G代码五轴联动运动控制器的硬件系统 2.1 AFDX05运动控制芯片 云山数控研发的AFDX05运动控制芯片,支持任意2~5轴直线级的运动指令缓冲区,很适合高速多线段或圆弧连续插补的运动控制,另外,还有反向间隙补偿,速度控制,

  2016年通用运动控制GMC和计算机数控CNC的市场表现不同,在不同终端市场需求的推动下,全球GMC市场上升了5%达到69亿美元。然而,CNC市场却收缩了2.9%至39亿美元,根本原因是美国和日本的机床销售低迷。 全球运动控制商品市场在2015年显著下降,到2016年表现为稳健增长,硬件营收越108亿美元,控制管理系统软件营收超过2100万美元。业内分析师预计,运动控制市场将会持续增长,2016年到2021年间维持4.4%的复合增长率,并在2021年达到134亿美元的总营收。 2016年通用运动控制GMC和计算机数控CNC的市场表现不同,在不同终端市场需求的推动下,全球GMC市场上升了5%达到69亿美元。然而,CNC市场却

  一  PMC6496的特点 PMC6496运动控制器是雷赛公司在独立式运动控制器的基础上,精心研发的一款具有PLC特点的高性能产品。由于其全面支持IEC61131-3标准梯形图编程语言,在逻辑控制上可完全与中、小型PLC媲美。同时,其强大的运动控制功能更是传统中、小型PLC无法匹敌的。 1 .PMC6496的硬件性能 图1为PMC6496运动控制器的硬件结构图。 图1  PMC6496运动控制器硬件结构 PMC6496基于嵌入式处理器和FPGA的硬件结构,插补算法、脉冲信号的产生及加速和减速控制、I/O信号的检测处理,均由硬件和固件实现,确保了运动控制高速、高精度及系统稳定。该系列控制器可控制4个步进或伺服电机,具有最高5MH

  器的机械手上下料系统 /

  为了满足当今半导体产业的最高的多轴自动化应用的需求,工程师们转而朝向把最好的集成和基于网络的控制属性的运动控制平台方向。   许多先进机器的控制平台,即基于网络和集中控制开始看到从自动化领域里广泛的实践,因为它们需要大量的解决能力和通信带宽,这在几年前微处理器和网络技术是没办法实现的。 在高端多轴自动化行业很多人知道,从20世纪90年代以来的集中式多轴控制器的好处。 使用中央高速处理器,处理协调多轴运动控制已被证明为确定性数字伺服控制的有效架构,使最快的更新率和精密的同步。 另外,网络结构,如CANopen网络的,已经成功地实践在了太阳能电池板划线,半导体制造和通用自动化应用中等需要可扩展性,开放的多厂商和设备,对成本控制敏感的

  最初, PLC 大多数都用在开关量的逻辑控制。随着PLC技术的进步,它的应用领域逐步扩大。如今,PLC不仅用于开关量控制,还用于模拟量及数字量的控制,可采集与存储数据,还可对控制管理系统进行监控;还可联网、通讯,实现大范围跨地域的控制与管理。PLC已日益成为工业控制装置家族中一个重要的角色。 1、用于开关量控制 PLC控制开关量的能力是很强的。所控制的入出点数,少的十几点、几十点,多的可到几百、几千,甚至几万点,由于它能联网,点数几乎不受限制,不管多少点都能控制,所控制的逻辑问题能是多种多样的:组合的、时序的、即时的、延时的、不需计数的、需要计数的、固定顺序的、随机工作的等等,都可进行。 PLC的硬件结构是可变

  机器人的运动操控方法看似格外的简单:有驱动器的支持末端执行器快速准确的到达指定的位置,当然也会涉及一些调整,和所有工程决策一样,取决于给定应用的最优结果相关的优先级设置。机器人运动控制管理系统从基础专用功能IC到高集成非常灵活的,集成丰富的辅助和支持功能。 现在复杂的机器人手臂的控制,无论它们的大小与功率,都需要多轴同步管理才能实现动作控制。现代器件——、切换器件(、)、设备驱动、控制系统(现在主要是数字化、之前是模拟控制)、反馈——使得精确的动作控制相比几年前显得更为简单(如图1所示)。然而与此同时对于系统性能需要也显著增加了,所以现在整个项目的搭建也是相当的困难。 图1:机器人基础的动作控制管理系统,包括

  1、引言 运动控制管理系统是以机械运动的驱动设备—电动机为控制对象, 以控制器为核心, 以电力电子、功率变换装置为执行机构, 在自动控制理论指导下组成的电气传动控制管理系统。在电气时代, 电动机一直在现代化的生产和生活中起着十分重要的作用。在近年来, 由于半导体制造设备等相关的电子制造设备市场大幅成长, 而使得机器设备上的运动控制系统出现了以下几点技术需求: ( 1) 多轴运动控制。机器设备因自动化程度提高而使得单一机器上所需要的轴数增多, 一台设备上十几轴是常见的事情。在轴数变多后, 如何协调各轴动作就是一个重要的课题。 ( 2) 体积要小。由于厂房空间的限制, 机器的体积要求越小越好, 机器内控制器的体积也就被要求愈来愈小, 相对

  系统的设计 /

  摘要: 介绍一种基于DSP的多轴运行控制器的设计的具体方案,包括控制器的各部分所组成及功能,并给出相应的示意图。此种控制器设计个有集成度高、运算速度快、解决能力强等特点。     关键词: DSP TMS320F206 多轴运行控制器 PC/104总线 引言 现代化控制日新月异的今天,各类高速、高精度的控制设备得到了广泛的运用。作为一种实时补偿的操控方法,其相应的硬件设备要求在保持控制实时性的基础上,更要具有与主控机进行实时数据交流的能力。此类设备在很多数控设备、机器人控制等方面都有广泛的运用。另一方面,DSP是现在比较热门的技术,其芯片处理速度能达到几十ns、几ns,甚至更高,处理精度为32位或更高,所

  系统-陈伯时-第五版

  与S7-1200 PLC应用技术教程 (郑海春)

  (融亦鸣,朴松昊,冷晓琨)

  直播回放: TI MSPM0 应用详解 - 电力输送,工厂自动化与控制系统

  有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  1946年,第一台计算机ENIAC诞生,冯诺伊曼据此提出了经典的冯诺伊曼架构,自此,计算机的存储与处理技术在八十年间得到不断演进,现代 ...

  Cooper™ 开发者平台为工业应用、AIoT、智能视频分析和前端 AI 计算应用提供高能效解决方案。美国加利福尼亚州圣克拉拉市,2024年1月10 ...

  “应用创新、打造新生态”,ICDIA 2024启航!各大研究机构觉得全球半导体市场在2023年到达周期性低点后,今年将整体出现复苏的趋势。Gartn ...

  随着生活水平的提高,人们对电子科技类产品的要求也慢慢变得高,很多电子科技类产品都用上了显示屏,像家电、汽车、医疗等很多产品都配有显示屏,而且这些 ...

  电动机的过载保护指的是在电机承受超过其额定负载时,通过一系列保护的方法保护电动机的安全运行。电动机有多种过载保护方法,其中最常见的方 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科